Математическая статистика
Страница 3

Функции распределения X и Y имеют вид (см. приложение, Рис. 6, 7).

Регрессионный анализ

Между переменными X и Y существует функциональная связь у = f(x), т.е. каждому значению аргумента Х соответствует единственное значение аргумента Y. Регрессия — зависимость среднего значения какой-либо величины Y от другой величины X. Понятие регрессии в некотором смысле обобщает понятие функциональной зависимости у = f(x). Только в случае регрессии одному и тому же значению x

в различных случаях соответствуют различные значения y.

Регрессионный анализ заключается в определении аналитического выражения связи, в котором изменения одной величины (называемой зависимой или результативным признаком) обусловлено влиянием одной или нескольких независимых величин (факторов).

По форме зависимости различают:

1). Линейную регрессию

, которая выражается уравнением прямой — линейной функцией вида: у =ax+b.

Если в результате n

экспериментов точки на диаграмме рассеивания расположены таким образом, что прослеживается тенденция роста Y при росте X, то это предположение о линейной зависимости: у = f(x).

Эта зависимость определяется двумя параметрами — а и b. Подобрав эти параметры, можно получить уравнение регрессии.

2). Нелинейную

(параболическую

) регрессию

: у =ах2 +bх+с.

3). Полиномную регрессию

— полином первой степени: у =ах+b (линейная регрессия);

— полином второй степени: у = ах2 +bх+с (параболическая регрессия);

— полином n-ой степени: y = anxn + … + a2x2 + a1x + a0.

Целью регрессионного анализа является оценка функциональной зависимости результативного признака (у) от факторных (x1, x2, …,Xn).

Метод наименьших квадратов (МНК)

Найдем по данным наблюдений выборочное уравнение прямой линии у = ах+b среднеквадратичной регрессии Y на X.

Это можно сделать с помощью метода наименьших квадратов (МНК). Этот метод, применяется в теории ошибок, для отыскания одной или нескольких величин по результатам измерений, содержащих случайные ошибки. МНК также используется для приближенного представления заданной функции другими (более простыми) функциями и часто оказывается полезным для обработки наблюдений.

Для того чтобы определить параметры a и b необходимо знать отклонения

(точки, находящиеся не на на прямой, а рядом). Суммарное отклонение будет равно:

где Yiexp — экспериментальные точки (не обязательно лежащие на прямой), Yiteor — теоретические точки (лежащие на прямой).

Чтобы все отклонения давали в суммарном отклонении положительные числа, надо возвести в квадрат эти отклонения:

где Δ — суммарное квадратичное отклонение, которое зависит от параметров

а и b,

Yi

— экспериментальные значения Y, axi + b — теоретические значения Y.

Лучшими параметрами а и b являются такие, которые минимизируют Δ

, следовательно, среди бесконечного множества прямых, которых дает прямая у = ax + b, наилучшей является прямая с такими значениями параметров а

и b

, для которых Δ(а, b) принимает минимальное значение.

Чтобы найти эти значения параметров а и b, необходимо найти точку минимума функции Δ(а, b). Для этого берется производная

и рассматривается система двух уравнений, решения которой — значения a

и b

:

Для данных курсовой работы получаем:

a = 6041,9;

b = 1115,6.

Т.е. y = 6041,9x + 1115,6;

По тем же данным курсовой работы вычислим коэффициенты уравнения параболической регрессии.

Параболическое уравнение регрессии Y на X имеет вид

Неизвестные параметры A, B,C находят из системы уравнений:

Страницы: 1 2 3 4 5