Таблица 2. Корреляционная таблица
Характеристики значений выборки
На основе данных корреляционной таблицы можно посчитать все характеристики наблюдаемых значений выборки намного быстрее и проще, но они будут иметь некоторые отклонения от выборочных характеристик, посчитанных по формулам. Это объясняется уменьшением размеров рассматриваемых величин, которое происходит из-за разбиения их на интервалы.
Посчитаем числовые характеристики для Х и Y по корреляционной таблице.
выборочной средней и находится по формуле:
Выборочной дисперсией называют среднее арифметическое квадратов отклонения наблюдаемых значений признака от их среднего значения:
Корреляционным моментом (ковариацией, смешанной дисперсией) случайных величин Х и Y называют математическое ожидание произведения отклонений этих величин:
kxy = M[(x – M(x))(y – M(y))].
Для данной работы:
М*(X) = 1,57018; М*(Y) = 10639,18813;
D*(X) = 0,278051305; D*(Y) = 10313962,39;
s* (X)= 0,527305704; s*(Y) = 3211,53583.
r*xy = 0,985735993; k*xy = 1671,654574.
Графический способ анализа данных
В данной курсовой работе необходимо наглядно изобразить различные зависимости величин друг от друга. Одним из лучших средств визуального изображения зависимостей являются:
· диаграмма рассеивания;
· гистограмма рассеяния;
· полигон относительных частот
· линейная регрессия .
· эмпирическая функция распределения
Диаграмма рассеивания
Диаграмма рассеивания получается путем нанесения данных всех пар чисел (100) на координатную плоскость (см. приложение, рис.1).
Гистограммы рассеивания
Гистограммы рассеивания также являются одним из способов наглядного представления распределения значений случайной величины. В данной курсовой построены гистограммы рассеивания относительных частот для случайных величин Х (уровень радиации) и Y (количество лейкоцитов в крови человека). Гистограммой относительных частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которых служат частичные интервалы длиной h, а высоты равны отношению pi*/n , (n –– общее количество точек). Приведем гистограмму относительных частот распределения уровня радиации и гистограмму относительных частот для количества лейкоцитов в крови человека (см. приложение, рис. 2, 3).
Полигон относительных частот —
ломаная, соединяющая точки (x1, W1)…(xn, Wn). Для построения полигона относительных частот на оси абсцисс откладывают варианты xi, а на оси ординат — соответствующие им относительные частоты Wi. Приведены полигоны относительных частот распределения уровня радиации и количества лейкоцитов в крови человека (см. приложение, рис.4,5) Эмпирической функцией распределения называют функцию F*(x), определяющую для каждого значения x относительную частоту события X<x.
По определению, F*(x)=nx/n, где nx — число вариант , меньших x; n — объем выборки.