Постоянное магнитное поле в принципе может оказывать влияние на различные процессы в биологических объектах: насчитывают до 20 возможных видов такого рода взаимодействий. Сделано немало попыток теоретического рассмотрения основных физических механизмов биологических эффектов магнитного поля и оценки величин напряженности поля, при которых возможны такие эффекты. Эти теоретические исследования можно разделить на две основные группы в зависимости от того, какие эффекты магнитного поля (микроскопические или макроскопические) в них рассматриваются.
В первой группе исследований исходное предположение состоит в том, что механизмы биомагнитных эффектов обусловлены физическими явлениями, возникающими на молекулярном и даже на атомном уровне. Так, одни авторы видят основную причину биомагнитных эффектов в ориентации диамагнитных или парамагнитных молекул под действием магнитного поля, другие предполагают, что это поле может вызывать искажения валентных углов в молекулах, третьи обращают внимание на ориентацию спинов молекул в магнитном поле и т. п.
Недавно было высказано предположение, что в молекулах воды, помещенной в магнитное поле, могут происходить орто - пара-переходы. Необходимая для этого магнитная энергия (в расчете на молекулу) весьма невелика - например, в сотни раз меньше, чем для разрывов слабых водородных связей в молекуле. В результате орто-пара-переходов в водных растворах могут возникать области с параллельной ориентацией спинов, что приведет к выталкиванию из таких областей растворенных веществ.
Макроскопические механизмы биомагнитных эффектов рассматривались на различных моделях. Рассчитано, что в магнитном поле с напряженностью 3*105 э эритроциты должны вращаться со скоростью 68 град\мин, т. е. вдвое быстрее, чем за счет теплового движения, однако установление равновесного состояния в таком эффекте будет весьма медленным. Более вероятен эффект возникновения градиента электрического потенциала в кровеносных сосудах под действием магнитного поля (магнитоэлектрический эффект). Например, в аорте при скорости кровотока 100 см/сек под действием магнитного поля напряженностью 500 э будет индуцироваться электрическое поле с градиентом 0,14 мв\см, а при напряженности 5*Ю5 э - поле с градиентом 5 мв\см, что сравнимо уже с чувствительностью нервных клеток, составляющей 10 мв\см.
С позиций магнитомеханических явлений рассматривались также пульсирующие давления, которые могут возникать в тканях организмов при взаимодействии магнитного поля с биотоками, частоты которых варьируют от 10 до 2*103 имп/сек. По расчетам, при напряженности поля 102-103 э на участках, где протекают биотоки, могут возникать пульсирующие пондеромоторные силы, оказывающие давления порядка 10-6-10-1 дин/см2. Чувствительность человеческого уха (10-4 дин/см2} находится как раз в этих пределах. Предполагается возможность резонансных эффектов такого рода, когда частота вынужденных механических колебаний в данном участке организма (или органа) совпадает с собственной частотой его свободных колебаний. В этом случае магнитомеханический эффект может быть существенным и при весьма малых напряженностях поля, например в геомагнитном поле.