Функционирование гемоглобина в эритроцитах миноги предлагает уникальное среди позвоночных решение газового транспорта. Гемоглобин миноги в неповрежденных эритроцитах находится в олигомерном\мономерном равновесии и обладает сходным с остальными активными рыбами кислородным сродством. Проницаемость мембраны эритроцитов миноги для кислотных и основных эквивалентов очень низка и таким образом бикарбонат плазмы не может в достаточной степени дегидрироваться до CO2 пока кровь находится в жабрах. Это потенциальное ограничение на выведение CO2 преодолевается высоким внутриэритроцитарным pH и изменениями pH внутри эритроцита связанными с оксигенацией из-за относительной непроницаемости мембраны эритроцитов для кислотных эквивалентов внутриэритроцитарный гемоглобин не принимает участие в кислотно-основном забуферивании внеклеточного компартмента. Вследствие этого внеклеточные кислотные заряды вызывают заметные изменения pH плазмы.
Функции гемоглобина миног в основном изучались в разбавленных растворах. На основании этих исследований ясно, что гемоглобин миноги в растворах показывает как кооперативность, так и эффекты Бора и Хэлдена. Кроме того, сродство гемоглобина к кислороду у миноги зависти от концентрации гемоглобина в растворе. Это открытие, а так же наблюдение, что молекулярная масса деоксигенированного гемоглобина больше, чем оксигенированного показывают, что в миногах кооперативность связывания кислорода и влияние протонов на сродство гемоглобина к кислороду вызваны обратимыми реакциями ассоциации\диссоциации олигомеров\мономеров. Это явление противоположно ситуации с гемоглобином у всех других позвоночных, у которых эти эффекты являются результатом конформационных изменений тетрамерной молекулы.
Поведение гемоглобина миноги в растворе может быть объяснено следующей моделью: димерная\олигомерная форма молекулы имеет низкое сродство к кислороду вследствие ограничений, следующих из взаимодействий между субъединицами. В димере связывание кислорода ослабляет эти взаимодействия, молекула диссоциирует на субъединицы, вследствие чего сродство к кислороду каждой субъединицы возрастает. Вероятно, что дистальный гистидин (Е7) вовлечен в аллостерический переход: в мономерной форме он находится во внутренней позиции внутри гемового кармана (где он может образовывать водородную связь с кислородом), а в димерной форме гистидин (Е7) находится в наружном положении (где он формирует водородную связь с аспартатом и глутаматом соседней молекулы). Эффект Бора в таком случае объясняется различием между значениями pK гистидина во внутреннем положении (5,5-6,0) и во внешнем (ок. 8,0).
До недавнего времени было затруднительно интерпретировать данные по связыванию кислорода цельной кровью на основе поведения гемоглобина в растворе: например, сродство крови миноги к кислороду оказалось намного больше, чем ожидаемое на основании поведения гемоглобина в растворе, а так же численное значение фактора Бора, оцененное для всей крови оказалось намного ниже, ожидаемого на основании данных из раствора.
Противоречие между данными по связыванию кислорода гемоглобином в растворах и в эритроцитах было разрешено после открытия уникального среди позвоночных свойства мембраны эритроцитов миноги: ее проницаемость для кислотных и основных эквивалентов, а так же для хлорида очень низка. Вследствие очень незначительного пассивного транспорта кислотных эквивалентов через эритроцитарную мембрану внутриклеточные значения pH поддерживаются на высоком уровне в основном Na+/H+ обменом через мембрану.
Это уникальное свойство мембраны влияет на функционирование гемоглобина в эритроцитах миноги, на газовый транспорт и кислотно-основную регуляцию.