Теория вероятностей — наука, изучающая вероятностные закономерности случайных событий. Знание этих закономерностей позволяет предвидеть, как эти события будут протекать. Знание и методы теории вероятностей используются в различных отраслях естествознания и техники.
Числовые характеристики случайной величины
Случайная величина — это величина, которая в результате испытания примет одно и только одно возможное значение, заранее неизвестное и зависящее от случайных причин, которые заранее не могут быть известны.
Случайные величины подразделяются на дискретные и непрерывные. Дискретной случайной величиной называют случайную величину, которая принимает отдельные, изолированные возможные значения с определенными вероятностями. Непрерывной случайной величиной называют случайную величину, которая может принимать все значения из некоторого конечного или бесконечного промежутка. Законом распределения дискретной случайной величины называют соответствие между возможными значениями и их вероятностями. Законами распределения непрерывных случайных величин называют плотности распределений.
Математическое ожидание
Случайные величины имеют числовые характеристики, одной из которых является математическое ожидание. Математическим ожиданием дискретной случайной величины называют сумму произведений всех ее возможных значений на их вероятности. Математическое ожидание приближенно равно среднему значению случайной величины. Допустим, что случайная величина Х может принимать значения x1, x2, ., xn, вероятности которых соответственно равны p1, p2,…,pn. Тогда математическое ожидание М(X) случайной величины X определяется равенством
M(X) = x1p1 +x2p2 + … + xnpn.
Если дискретная случайная величина Х принимает счетное множество возможных значений, то можно записать:
Для данных, указанных в этой работе, математическое ожидание равно (pn принимается равным 0,01)
M(X) = 1,467;
M(Y) = 9979,058266.
Моды. Медианы
Мода случайной величины (Mo) — это число с наибольшей вероятностью.
Медиана случайной величины(Me) — это ее среднее значение.
Для данных, указанных в этой работе, моды и медианы равны
Mo(X)= 1,093333333;
Mo(Y)= 8506,90117;
Me(X)= 1,42;
Me(Y)= 9689,211947.
Дисперсия
Для определения дисперсии необходимо ввести понятие отклонения случайной величины от ее математического ожидания.
Пусть X
— случайная величина и М(Х)
— ее математическое ожидание. Рассмотрим в качестве новой случайной величины разность
Х – М(Х). Эту разность и называют отклонением, т.е. разность между случайной величиной и ее математическим ожиданием. При определении дисперсии используется следующее свойство отклонения:
y = px2 + qx + r.
Дисперсией случайной величины Х называют математическое ожидание квадрата отклонения случайной величины от ее математического ожидания:
D(X) = M[X – M(X)]2.
Также дисперсию вычисляют по формуле:
D(X) = M(X2) – [M(X)]2.
Для данных, указанных в этой работе дисперсия равна:
D(X) = 0,279473288;
D(Y) = 10499319,67.
.
Среднее квадратическое отклонение
Для оценки рассеяния возможных значений случайной величины вокруг ее среднего значения кроме дисперсии служат и другие характеристики, такие как среднее квадратическое отклонение. Средним квадратическим отклонением случайной величины X называют квадратный корень из дисперсии:
Для данных, указанных в этой работе отклонение равно:
s(X) = 0,528652332;
s(Y) = 3240,26537.
Моменты
Моменты служат для более подробной характеристики случайной величины. Они делятся на начальные и центральные. Начальные моменты характеризуют саму случайную величину, а центральные — отклонения случайной величины от М(Х)
.
Начальный момент n-го порядка — математическое ожидание от n
-ой степени случайной величины; обозначается:
αn = M(Xn)
.
Центральный момент n-го порядка — математическое ожидание величины (X – M(X))n; обозначается:
μn = M[(X – M(X))n].
В частности,
α1 = M(X); μ1 = 0;
α2 = M(X2); μ2 = D(X).
Для данных, указанных в этой работе, начальные и центральные моменты 1-3 порядков равны:
X |
Y | |
α1 |
1,467 |
9979,058266 |
α2 |
2,428767556 |
109975930,4 |
α3 |
4,45698776 |
1,3234E+12 |
μ1 |
0 |
0 |
μ2 |
0,279473288 |
10499319,67 |
μ3 |
0,082210874 |
18491004059 |