Примечание: В скобках – активность АЦ в%. Активность АЦ без пептидов принята за 100%.
Для выяснения типов G белков, вовлеченных в АЦ сигнальный механизм действия инсулина и ИФР-1 были использованы бактериальные токсины (коклюшный и холерный), которые модифицируют α-субъединицы Gi и Gs белков.
Коклюшный токсин вызывает АДФ-рибозилирование αi-субъединицы Gi белка, что ведет к потере его функциональной активности (Milligan, 1988; Reisine, 1990). Известно, что βγ-димер Gi белка обладает собственной регуляторной способностью и может стимулировать активность ФИ-3-К. Обработка мышечных мембран крысы и моллюска коклюшным токсином приводила к блокированию АЦ стимулирующего эффекта, как инсулина, так и ИФР-1 (таблица 7), что можно объяснить нарушением диссоциации гетеротримерного Gi белка на αi-субъединицу и βγ димер в условиях действия коклюшного токсина.
Таким образом, коклюшный токсин, предотвращая индуцируемую инсулином или ИФР-l стимуляцию активности ФИ-3-К, реализуемую через βγ-зависимый механизм, тормозит активацию АЦ.
Влияние холерного токсина на мембраны приводит к блокаде ГТФ-азной активности αs-субъединицы и тем самым переводит её в перманентно активированное состояние. В связи с этим обработка мембран холерным токсином может повлечь за собой стимулирование каталитической активности АЦ и наряду с этим ослабление регуляторных эффектов гормонов, действие которых на АЦ осуществляется через Gs белок (Milligan, 1988; Reisine, 1990). Обработка фракции мышечных мембран крысы и моллюска холерным токсином приводит к 2х-кратному увеличению базальной активности АЦ и снижению стимулирующего эффекта инсулина и ИФР-1 на активность фермента (таблица 7), что полностью согласуются со сведениями литературы и указывает на вовлеченность Gs белка в активацию АЦ с участием инсулина или ИФР-1.
Таким образом, совокупность данных, полученных с использованием коклюшного и холерного токсинов, указывает на участие как Gi, так и Gs белков в АЦ сигнальном механизме действия инсулина и ИФР-l.
Участие фосфатидилинозитол-3 киназы в реализации АЦ стимулирующего эффекта инсулина и ИФР-1
Для выяснения участия ФИ-3-К в АЦ сигнальном механизме действия пептидов инсулинового суперсемейства (инсулина и ИФР-1) был использован специфический ингибитор этого фермента - вортманнин. Инкубация мышечных мембран крысы и моллюска с вортманнином (10-9–10-7М) несколько снижает базальную активность АЦ (таблица 8). В отсутствии ингибитора инсулин и ИФР-1 отчетливо стимулируют активность АЦ. Между тем, АЦ стимулирующий эффект инсулина и ИФР-1 снижается в зависимости от концентрации ингибитора (10-9–10-7М). Ингибирующее действие вортманнина было наиболее выражено при концентрации 10-7М (таблица 8). Установленные факты свидетельствуют об участии ФИ-3-К в АЦ сигнальном механизме действия инсулина и ИФР-1 в мышечных тканях изучаемых объектов.
Таблица 8. Влияние вортманнина (10–9М–10–7М) на стимуляцию ИФР-1 (10–8М) и инсулином (10–8 М) активности АЦ в мембранной фракции скелетных мышцах крыс и гладких мышц моллюска Anodonta cygnea
Активность АЦ (пкмоль цАМФ/мин/мг белка) | ||||||
объекты |
Крысы |
Моллюски | ||||
воздействия |
без пептида |
ИФР-l |
инсулин |
без пептида |
ИФР-l |
инсулин |
без ворманнина |
21±1.6 |
38.2±1.0* |
41.4±2.3* |
17.8±1.0 |
41.1±2.6* |
24.5±1.0* |
+вортманнин 10–9М |
17.9±2.0 |
9.4±1.3 |
9.7±1.4 |
15.8±2.0 |
14.6±1.3 |
14.2±0.4 |
+вортманнин 10–8М |
16.5±2.3 |
8.6±1.3 |
8.4±1.3 |
14.6±2.3 |
13.9±0.8 |
11.6±1.0 |
+вортманнин 10–7М |
13.2±1.9 |
6.3±0.9 |
6.8±0.8 |
14.3±0.9 |
13.8±1.8 |
7.4±0.5 |