В восьмидесятые годы значительное развитие получила клиническая диагностика заболеваний человека с помощью введения в его организм радиоизотопов в индикаторных количествах. Визуализация с помощью радиоизотопов включает в себя ряд методов получения изображения, отражающих распределение в организме меченных радионуклидами веществ. Эти вещества называются радиофармпрепаратами (РФП) и предназначены для наблюдения и оценки физиологических функций отдельных внутренних органов. Характер распределений РФП в организме определяется способами его введения, а также такими факторами, как величина кровотока объема циркулирующей крови и наличием того или иного метаболического процесса.
Первое применение радиоизотопа для диагностики заболеваний щитовидной железы относится к концу 1930-хх гг. Ранние разработки устройств визуализации в 1950-х гг. представляли собой сканеры с двухкоординатным сканированием и сцинтилляционные камеры. В клинической практике оба этих типа устройств стали широко использоваться к середине 1960-х гг. Именно с этого периода камера Энгера становится одним из основных технических средств визуализации с помощью изотопов.
Радиоизотопные изображения позволяют получать ценную диагностическую информацию. В ядерной медицине в те годы наиболее распространенным методом клинической диагностики являлась статическая изотопная визуализация в плоскости, называемая планарной сцинтиграфией. Планарные сцинтиграммы представляют собой двумерные распределения, а именно проекции трехмерного распределения активности изотопов, находящихся в поле зрения детектора. В отличие от рентгенографии, в которой точно известно начальное и конечное положение каждого рентгеновского луча, при визуализации радиоизотопного источника можно определить положение лишь регистрируемого g-излучения.
Одним из возможных перспективных применений ультразвука в медицинской диагностике является допплерография, т. е. измерение скорости крови в кровеносном сосуде с помощью эффекта Доплера. Современная аппаратура обработки данных позволяет определить не только среднеквадратическую скорость в сосуде, но и относительные амплитуды сигналов, соответствующие различным скоростям составляющих кровотока. Это достигается посредством вычисления спектра принимаемого доплеровского сигнала в реальном масштабе времени.
Первые сообщения о применении принципа Допплера для измерения скорости кровотока принадлежат Satomura (1960), Franclin е.a.(1961).
В последующие несколько лет ультразвуковые допплеровские приборы были значительно усовершенствованы. Применение детектора направления кровотока (McLeod,1968,Beker e.a.,1969) значительно расширило возможности диагностики.
В 70-х годах был предложен метод "спектрального анализа" допплеровского сигнала, позволивший количественно оценить степень стеноза сонных артерий. В эти же годы параллельно с развитием постоянно волновых допплеровских систем внедряются системы с импульсным излучением. Сочетание последних со спектральным анализом и эхоскопией в "B" - режиме привело к созданию дуплексных систем.
1982 год является точкой отсчета для транскраниальной допплерографии. Первые клинические результаты применения этого метода были опубликованы R.Aaslid именно в этом году. Транскраниальная допплерография, образно говоря, "замкнула последнюю брешь" в диагностике окклюзирующих поражений брахиоцефальных артерий, позволив диагностировать интракраниальные поражения, до этого времени считавшиеся недоступными для ультразвукового исследования.
В основе допплерографии лежит физический эффект Допплера, суть которого состоит в изменении частоты посланных ультразвуковых волн при перемещении среды, от которой они отражаются, или при перемещении источника ультразвука, или при одновременном перемещении среды и источника (Рис 1.1).
В нашем случае ультразвуковые волны отражаются от частиц крови, и это изменение напрямую зависит от скорости кровотока.
Рис 1.1.
Схема эффекта Допплера.
В современных ультразвуковых допплеровских системах используется один датчик и для излучения, и для улавливания отраженной волновой энергии. Принцип Допплера описывает компонент вектора скорости вдоль линии наблюдения. Этот компонент скорости (или наблюдаемая скорость) равна: