Исходные данные в виде функции удобно использовать, если матрица приемников расположена на сфере. Однако в реальных ситуациях матрицу приемников обычно располагают на плоскости или поверхности цилиндра. В этих случаях удобно использовать несколько иной вид исходных данных.
Плоский детектор.
Мы будем предполагать, что для источника, находящегося в точке S = (s1, s2, s3), исходные данные регистрируются в плоскости P, определяемой уравнением xs1 + ys2 + zs3 = -½ S½ . Плоскость P, определяется следующими условиями:
плоскость P перпендикулярна лучу, соединяющему источник с началом координат;
плоскость P проходит через точку S= (s1, s2, s3.)
Расстояние D между плоскостью регистрации и источником равно удвоенному расстоянию от источника до начала координат. В плоскости регистрации будем использовать прямоугольную систему координат (p1, p2), начало которой находится в точке пересечения с лучем, соединяющим источник с точкой (0, 0, 0). Таким образом, если источник находится в точке S = (s1, s2, s3), то начало системы координат (p1, p2) в плоскости наблюдения находится в точке с трехмерными координатами -s1, -s2, -s3 =- S.
При реконструкции в конусе лучей наиболее распространенными примерами траекторий источника являются винтовая линия и совокупность двух окружностей лежащих в пересекающихся плоскостях.
Траектория в виде двух окружностей.
Рассмотрим окружность, лежащую в плоскости z =0.
Направление оси p2 в плоскости регистрации будет совпадать с направлением оси z.
Ось p1 системы координат возьмем на линии пересечения плоскости регистрации с плоскостью, содержащей окружность, по которой движется источник. Для окончательного определения системы координат необходимо выбрать одно из двух возможных направлений оси p1. Если s3 = 0, s1 = r cosl , s2 = r sinl (источник движется в плоскости z =0), то положительный единичный вектор на оси p1 выберем так, чтобы он совпадал с вектором (cos(l +p /2), sin(l +p /2), 0) = (-sinl , cosl , 0) = (-s2/½ S½ , s1/½ S½ , 0).
Точка, имеющая в плоскости регистрации координаты (p1, p2), имеет следующие пространственные координаты:
x = -p1 sinl - r cosl = -p1 s2 /½ S½ - s1 ,
y = p1 cos l - r sinl = p1 s1 /½ S½ - s2 , z = p2.
В случае плоского детектора, исходными данными являются интегралы по лучам, соединяющим точки (p1, p2) в плоскости регистрации с источником S.
Регистрируемая функция gr(p1, p2, l ) есть интеграл от искомой функции f(x) = f(x1, x2, x3) вдоль луча исходящего из точки S = (s1, s2, s3) = (rcosl , r sinl , 0) в направлении точки
P = (-p1 sin l - rcosl , p1 cosl - r sinl , p2 ) = (-p1 s2/½ S½ v s1, p1 s1/½ S½ v s2, p2).
Интегральная форма регистрируемой функции имеет вид:
При t = 0 луч проходит через точку S = (rcosl , rsinl , 0), при t = 1 v через точку P = (p1, p2) = (-p1 sin l - rcosl , p1 cosl - r sinl , p2).
Итак, мы имеем соотношение между функциями gr(p1, p2, l ) и :
,
.
Наряду с обозначением gr(p1, p2, l ), мы будем использовать обозначения gr(p1, p2, S(l )), gr(p1, p2, S) и gr(P, S) , здесь S(l ) точка на траектории источника, соответствующая параметру l , P = (p1, p2). Мы выразили функцию gr(p1, p2, l ) через функцию = g+ (x , l ).
В формуле обращения лучевого преобразования используется функция g+ (x , l ) = для того, чтобы использовать gr(p1, p2, l ), регистрируемую в случае плоского детектора, нужно выразить g+ (x , l ) используя gr(p1, p2, l ).
Для дальнейшего нам потребуются координаты (p1, p2) (в системе координат плоскости регистрации) точки пересечения плоскости регистрации данных с лучем (S +tx ) = (s1 + tx 1, s2 + tx 2, s3 + tx 3). Эти координаты имеют вид:
.
.
Теперь мы можем выразить используя gr(p1, p2, l ):