На этом этапе в исследовании выявляется зависимость уровня процентов людей, болеющих сахарным диабетом (Y) от показателей, включенных в факторный набор. При исследовании временных рядов важно не только выявить непосредственное воздействие уровня факторного признака на результирующий (речь идет о корреляции), но и учесть возможность существования запаздывания, то есть такой ситуации, когда влияние одного показателя на другой проявляется через какой-то временной интервал (это и позволяет сделать лаговая корреляция). Показателем зависимости между признаками является коэффициент корреляции (или коэффициент лаговой корреляции), его знак и величина позволяют сделать вывод о наличии, силе и направлении связи.
Построив функции перекрестной корреляции Y и факторных признаков, проанализируем полученные коэффициенты корреляции и лаговой корреляции. Для всех коэффициентов, кроме х3, принят уровень значимости α=5%, для х3 принят α=10 % .
Рис. 3.1. Функция перекрестной корреляции У и Х1 (процент людей, которые перенесли вирусный гепатит)
Анализируя рассчитанные коэффициенты, можно сделать вывод, что корреляционная связь между уровнем процентов людей, которые перенесли гепатит и процентом людей, у которых сахарный диабет передался по наследству (рис. 3.1), невысока и статистически незначима (коэффициент корреляции rx1y=0,2294). Такая ситуация может быть объяснена тем, что процент людей, которые перенесли вирусный гепатит оказывает косвенное влияние на процент людей, болеющих сахарным диабетом.
Рис. 3.2. Функция перекрестной корреляции У и Х2 (процент людей, страдающих излишним весом)
Статистически значимой связи между процентом людей, болеющих сахарным диабетом и процентом людей, страдающих излишним весом (Х2) в ходе исследования обнаружено не было: коэффициент корреляции и коэффициенты лаговой корреляции между этими показателями невысоки и статистически незначимы на уровне 5% (рис. 3.2). Такая ситуация может быть объяснена тем, что не все полные люди обязательно болеют сахарным диабетом (т.е. х2 оказывает на У не непосредственное, а косвенное влияние), это могут быть: бывшие спортсмены; женщины после родов; люди, бросившее курить и др.
Рис. 3.3. Функция перекрестной корреляции У и Х3 (процент людей, у которых болезнь эндокринной системы)
Коэффициент лаговой корреляции с лагом равным 0, значимый на 10%-ном уровне, показывает наличие прямой сильной связи между признаками Х3 и Y (r=0,7265), что говорит о влиянии на процент людей, болеющих сахарным диабетом такого показателя, как процент людей, у которых болезнь эндокринной системы (х3).Это говорит о том, что подтвердилась гипотеза, так как сахарный диабет – это и есть заболевание эндокринной системы.
Рис. 3.4. Функция перекрестной корреляции У и Х4 (процент людей, у которых сахарный диабет передался по наследству (наследственная предрасположенность)).
Коэффициент лаговой корреляции с лагом 4, значимый на 5%-ном уровне, показывает наличие прямой умеренной связи между признаками как Х4 и Y (r=0,6283),так и обратной между У и Х4 (r= -0,605): процент людей, у которых сахарный диабет оказывает большое влияние на болеющих сахарным диабетом с наследственной предрасположенностью и наоборот, чем больше людей, у которых наследственная предрасположенность к сахарному диабету, тем больше в дальнейшем больных сахарным диабетом. Но х4 в большей степени влияет на у, так как из-за репродуктивной функции людей с наследственной предрасположенностью все больше рождается людей, больных сахарным диабетом. Это говорит о том, что подтвердилась гипотеза о воздействии этого показателя на число больных.
Рис. 3.5. Функция перекрестной корреляции У и Х5 (процент людей, с острыми кишечными заболеваниями)
Гипотеза о наличии связи процента людей с ОКЗ и процентом болеющих сахарным диабетом статистически не подтвердилась: коэффициент корреляции и коэффициенты лаговой корреляции оказались невелики и незначимы на уровне 5% (рис. 3.5).
Таблица парных коэффициентов корреляции показателей с уровнями
Значимости по новым данным
|
Y |
X1 |
X2 |
X3 |
X4 |
X5 |
Y |
1,0000 |
,2211 |
,1599 |
,5640 |
,7294 |
-,1510 |
|
p= --- |
p=,513 |
p=,620 |
p=,071 |
p=,011 |
p=,658 |
X1 |
,2211 |
1,0000 |
-,2864 |
-,1358 |
-,0557 |
,4157 |
|
p=,513 |
p= --- |
p=,393 |
p=,691 |
p=,871 |
p=,204 |
X2 |
,1599 |
-,2864 |
1,0000 |
,1763 |
,2854 |
-,4720 |
|
p=,620 |
p=,393 |
p= --- |
p=,604 |
p=,395 |
p=,056 |
X3 |
,5640 |
-,1358 |
,1763 |
1,0000 |
,1244 |
-,4779 |
|
p=,071 |
p=,691 |
p=,604 |
p= --- |
p=,634 |
p=,052 |
X4 |
,7294 |
-,0557 |
,2854 |
,1244 |
1,0000 |
-,4435 |
|
p=,011 |
p=,871 |
p=,395 |
p=,634 |
p= --- |
p=,172 |
X5 |
-,1510 |
,4157 |
-,4720 |
-,4779 |
-,4435 |
1,0000 |
|
p=,658 |
p=,204 |
p=,056 |
p=,052 |
p=,172 |
p= --- |